본문 바로가기

데이텀

초급 #06 데이텀의 역할 : 피쳐의 관계 정의 가로가 30이고, 세로가 17인 파트가 있을 때 치수공차와 기하공차로 다음과 같이 정의할 수 있다.치수공차가 가지고 있는 가장 큰 문제는 피쳐 자체의 치수는 통제할 수 있을지 모르겠지만, 피쳐 사이의 관계는 통제하기 어렵다는 것이다.치수공차로 정의한 경우 오른쪽 그림과 같이 기울어져 있어도 가로치수 30±1을 만족하고, 세로치수 17±1을 만족하기 때문에 정의한 치수공차를 만족하게 된다. 그런데 과연 이러한 파트를 원했던 것일까? 기하공차를 사용하면 피쳐 사이의 관계를 정의하여 통제할 수 있다. 설명을 간단하게 하기 위해 2차원 상에서 설명한다.파트의 왼쪽면을 통제하는 수직공차는 데이텀 피쳐 A를 참조하고 있다. 따라서 파트의 왼쪽면은 데이텀 피쳐 A를 기준으로 통제된다. 그리고 파트의 왼쪽면은 데이텀 .. 더보기
초급 #25 평면서피스에 의한 DRF 구축과정 아래 그림의 파트는 홀 2개가 위치공차로 규제되어 있다. 위치공차를 규제하기 위해 데이텀 피쳐 A, B, C가 차례로 참조되어 있다. 데이텀 피쳐 A, B, C는 평면 서피스이다. 평면 서피스 3개로 DRF가 형성되는 과정을 순서대로 살펴보자. 1차 데이텀 피쳐FCF에 첫번째로 표기된 피쳐는 1차 데이텀 피쳐가 된다. 1차 데이텀 피쳐가 평면서피스면, 이 평면서피스는 DRF의 첫번째 평면의 위치를 정한다. DRF의 다른 두 평면이 이 평면에 수직하기 때문에 첫번째 평면의 위치는 중요하다.1차 데이텀 피쳐는 바닥면이다. 바닥면은 슬롯에 의해 3개로 나누어진 서피스이다. 데이텀 피쳐 A의 FCF와 데이텀 피쳐 심볼에 “3X”가 표기되어 있다. 이는 서피스 3개가 데이텀 피쳐 A임을 나타낸다. 따라서 위치공차.. 더보기
중급 #01 데이텀 피쳐의 형상에 따라 제한되는 자유도가 달라진다. 데이텀 피쳐의 형상에 따라 제한되는 자유도가 달라진다. 자유도를 어떻게 제한할 수 있는지 살펴보자. 도면에서 다음과 같은 형상의 피쳐를 데이텀 피쳐로 선정하였다. 실제 파트는 다음과 같이 완벽하지 않은 형상으로 만들어질 것이다.완벽하지 않은 형상을 다음과 같이 완벽한 형상으로 추상화한다.이렇게 추상화된 완벽한 형상으로부터 다음과 같이 데이텀을 유도한다.데이텀은 기하학적 기본요소인 점, 선, 면으로 이루어진다. 구는 점이 도출된다. 원기둥은 선이 도출된다. 평면은 면이 도출된다. 원뿔은 점솨 선이 도출된다. 삼각기둥은 점과 면이 도출된다. 마지막 복합형상은 점, 선, 면이 모두 도출된다. 그림에는 데이텀의 크기가 있는 것처럼 표현되었지만, 데이텀 선과 면은 화살표방향으로 무한하게 길어지고 넓어질 수 있다... 더보기
기초 #26 데이텀 피쳐에 의해 공차영역의 자유도가 제한된다. 다음과 같이 공차가 정의된 파트를 살펴보자. 모든 파트는 서피스로 이루어진다. 아래의 파트는 다음과 같이 10개의 서피스로 이루어져 있다. 기하공차를 사용하여 모든 서피스를 통제해야 한다. 가장 간단하게 모든 서피스를 통제할 수 있는 방법은 윤곽공차를 정의하는 것이다. 이렇게 윤곽공차를 정의하면 모든 서피스에 윤곽공차 2가 적용된다. 하지만 서피스 사이의 관계는 통제되지 않는다. 윤곽공차가 데이텀 피쳐를 참조하고 있지 않기 때문에 윤곽공차에 의해 생성되는 공차영역은 서로 개별적으로 자유롭게 움직일 수 있다. 따라서 공차영역들은 서로 아무런 관계가 정의되지 않는다.이제 윤곽공차에 데이텀 피쳐 A를 참조하고, 데이텀 피쳐 A로 사용할 피쳐를 도면에 식별했다. 따라서 윤곽공차에 의해 생성되는 공차영역은 데이.. 더보기
기초 #24 DRF(데이텀 레퍼런스 프레임)은 실제 파트에 의해 생성된다. 모든 파트는 병진자유도 3개와 회전자유도 3개를 가지고 있다. 즉, 파트는 6개 방향으로 움직일 수 있다.그러한 파트가 평면 하나와 관계를 맺으면 파트는 병진자유도 1개와 회전자유도 2개를 잃는다.계속해서, 파트의 다른 면을 앞선 평면에 수직인 평면과 관계를 맺으면 파트는 남아 있는 자유도 중 병진자유도 1개와 회전자유도 1개를 잃는다.계속해서, 파트의 또다른 면을 앞선 두 평면에 수직인 평면과 관계를 맺으면 파트는 남아 있는 자유도 1개 마저 잃게 된다. 결과적으로 파트는 평면 3개에 의해 생성된 공간 안에서 움직일 수 없게 된다.이렇게 파트에 의해 생성된 공간을 DRF(Datum Reference Frame)이라고 한다.DRF는 서로 수직한 세 개의 평면으로 구성되고, 두 평면이 교차하는 곳에 축이 .. 더보기
기초 #22 참조하는 데이텀 피쳐를 수정하는 모디파이어 (4개) 재료경계 모디파이어 재료경계 모디파이어를 데이텀 피쳐 문자 다음에 표기하면 데이텀 피쳐를 참조할 때 특정한 재료경계를 참조할 수 있다. 재료조건 모디파이어와 동일한 심볼이지만 심볼의 위치에 따라 의미하는 바가 달라진다. 재료상태를 나타내는 심볼이 데이텀 피쳐 문자 다음에 있다면, 이는 재료경계 모디파이어로 데이텀 피쳐 참조할 때 데이텀 피쳐가 특정한 재료상태일 때의 경계를 참조한다는 의미이다. 만약 MMC 상태를 나타내는 심볼이 데이텀 피쳐 문자 다음에 표기되어 있다면 데이텀 피쳐가 최대가 되는 MMC 상태에서 생기는 경계를 데이텀 피쳐로 참조하겠다는 의미이다. 만약 LMC 상태를 나타내는 심볼이 데이텀 피쳐 문자 다음에 표기되어 있다면 데이텀 피쳐가 최소가 되는 LMC 상태에서 생기는 경계를 데이텀 피.. 더보기
기초 #21 데이텀 피쳐의 식별 피쳐의 자세와 위치를 설명하기 위해 데이텀 피쳐가 필요하다면, 도면에 이를 나타내야 한다. 이는 데이텀 피쳐로 사용할 피쳐를 데이텀 피쳐 심볼로 나타낸다. 데이텀 피쳐 심볼은 아래와 같다. 데이텀 피쳐는 도면에서 위와 같은 심볼로 나타낸다. 데이텀 피쳐 심볼은 네모 안에 문자를 표기하고 이를 삼각형으로 끝나는 지시선과 연결한다. 삼각형은 채워도 되고 비워도 된다. 네모 안의 문자는 데이텀 피쳐 문자이다. 데이텀 피쳐는 서피스 피쳐를 사용할 수도 있고, 사이즈 피쳐를 사용할 수도 있다. 무엇을 사용하느냐에 따라 배치가 달라진다. 따라서 데이텀 피쳐 심볼의 배치 방식을 알아야 한다. 아래 그림은 동일한 부품이지만 데이텀 피쳐 A가 다르게 배치되어 있다. 왼쪽 그림은 데이텀 피쳐 심볼이 부품의 플랜지 뒷면을.. 더보기
기초 #20 데이텀이란 무엇인가? 데이텀과 DRF는 본격적으로 GD&T를 해석하고 적용하기 전에 이해해야 할 기본 개념 중 하나다. 데이텀은 3차원 공간에서 피쳐의 위치나 자세를 정하는 이론적인 기준이다. 이 글에서는 데이텀을 소개하고 그것이 왜 GD&T를 이해하는데 중요한지 살펴보겠다. AMSE의 정의 먼저 ASME에서 데이텀을 어떻게 정의하고 있는지 살펴보자. ASME의 7장은 데이텀과 DRF에 대한 내용이다. 7장을 시작하기에 앞서 다음과 같이 7장을 소개하고 있다.This Section also establishes the criteria for establishing datums and the datum reference frame using true geometric counterparts derived from datum .. 더보기
기초 #03 FCF 읽는 방법 FCF는 통제하려는 기하학적 특성과 공차영역에 대한 정보를 포함한다. FCF의 정보는 대상, 특성, 정도, 기준으로 구성되고, 각각은 다음과 같이 나타낸다.① 대상은 지시선으로 피쳐를 지시하고 이 지시선과 FCF를 연결하여 지시된 피쳐가 대상임을 나타낸다.② 특성은 기하공차 종류를 나타내는 심볼로 어떤 기하학적 특성을 통제할 것인지 나타낸다.③ 정도는 공차영역의 형상과 크기를 심볼과 값으로 나타낸다.④ 기준은 기준으로 삼으려는 피쳐를 데이텀 피쳐 문자로 나타낸다. 기하공차를 어느 정도 접해본 사람이라면 이런 내용을 이미 알고 있을 것이다. 따라서 대상, 특성, 정도, 기준과 같이 복잡한 말을 사용하면, 간단한 개념을 불필요하게 복잡하게 설명하는 것처럼 보일 수 있다. 하지만 이러한 구분은 향후 복잡한 기.. 더보기
기초 #02 FCF(피쳐 컨트롤 프레임)의 구성 GD&T는 심볼과 작성방식을 표준화하여 설계자, 생산자, 검사자가 공통된 언어로 소통할 수 있게 해준다. 이러한 GD&T 정보를 전달하기 위해 피쳐 컨트롤 프레임(Feature Control Frame, 이하 FCF)을 사용한다. FCF를 사용하여 피쳐의 기하학적 요구사항을 전달한다. FCF에는 통제하려는 기하학적 특성과 공차영역에 대한 정보가 포함된다. FCF는 작성자와 사용자 간의 의사소통을 명확하게 하기 위해 정해진 방식을 따라 작성되어야 한다. FCF는 단일 피쳐뿐만 아니라 복수 피쳐나 패턴 피쳐의 기하학적 요구사항도 전달할 수 있다. 위 그림의 FCF는 패턴홀의 사이즈 치수 아래 있다. 따라서 이 FCF는 패턴홀을 통제한다. 패턴홀의 기하공차가 FCF를 사용하여 정의되어 있다. FCF에는 통제정.. 더보기
데이텀 피쳐의 재료경계조건을 다르게 참조할 때의 효과 피쳐를 통제할 때, 기준이 되는 피쳐를 데이텀 피쳐로 참조한다. 동일한 피쳐를 데이텀 피쳐로 참조하더라도 재료경계를 다르게 참조하면 결과도 달라진다. 따라서 필요에 맞게 적절한 순서로 참조해야 한다. 다음은 위의 도면에 따라 제작된 서로 다른 파트 2개를 검증할 때 데이텀 피쳐의 재료경계를 다르게 참조하면 결과가 달라짐을 보여준다. 어떻게 위와 같은 결과가 발생하는지 단계별로 살펴보자. 원형 평판에 보스가 있고, 원형 평판에는 홀이 4개 있다. 이 홀의 위치를 통제하려고 한다. 이를 위해 평판의 뒷면을 데이텀 피쳐 A로 참조하고, 보스를 데이텀 피쳐 B로 선정한다. 이렇게 선정된 데이텀 피쳐를 기준으로 홀의 위치를 통제해보자. 보스는 사이즈 피쳐이다. 따라서 보스를 데이텀 피쳐로 참조할 때 RMB 경계.. 더보기
데이텀 피쳐의 순서를 다르게 참조할 때의 효과 피쳐를 통제할 때, 기준이 되는 피쳐를 데이텀 피쳐로 참조한다. 동일한 피쳐를 데이텀 피쳐로 참조하더라도 순서를 다르게 참조하면 결과도 달라진다. 따라서 필요에 맞게 적절한 순서로 참조해야 한다. 다음은 위의 도면에 따라 제작된 서로 다른 파트 2개의 위치공차를 검증할 때 데이텀 피쳐 참조순서를 다르게 하면 결과가 달라지는 것을 보여준다.어떻게 위와 같은 결과가 발생하는지 단계별로 살펴보자. 원형 평판에 보스가 있고, 원형 평판에는 홀이 4개 있다. 이 홀의 위치를 통제하려고 한다. 이를 위해 평판의 뒷면을 데이텀 피쳐 A로 참조하고, 보스를 데이텀 피쳐 B로 선정한다. 이렇게 선정된 데이텀 피쳐를 참조하여 홀의 위치를 통제해보자.다음과 같이 실제로 제작된 파트 2개가 있다. Case1과 Case 2.. 더보기
MMB 계산과 적절한 MMB 선택 데이텀 피쳐를 MMB 경계로 참조하면, TGC 크기는 고정된다. 이 크기는 상위 데이텀을 준수한 상태에서 사이즈 공차와 기하공차의 효과가 조합되어 정해진다. MMB를 물리적으로 시뮬레이션하려면 크기가 고정된 기계요소나 게이징 요소를 사용한다. 데이텀 피쳐의 MMB는 피쳐가 도면에 정의된 사이즈 공차와 기하공차를 만족한다면 피쳐가 절대 침범할 수 없는 경계를 나타낸다. 이는 VC경계와 비슷하지만, VC경계는 통제피쳐(기하공차의 대상이 되는 피쳐)에 적용되는 개념인 반면 MMB 경계는 참조피쳐(대상이 되는 피쳐를 위해 참조하는 피쳐)에 적용되는 개념이다. TGC 크기를 찾으려면 데이텀 피쳐를 규제하는 기하공차를 분석해야 한다. 데이텀 피쳐를 여러 개의 기하공차로 통제한다면, 데이텀 피쳐의 MMB는 여러 개.. 더보기
베이직 치수로 정의 했을 때와 일반 치수로 정의 했을 때의 차이 다음과 같이 정의된 도면이 있다. 한쪽은 동일한 치수가 베이직 치수로 정의되고 다른 한쪽은 동일한 치수가 일반치수로 정의되어 있다.두 경우는 같을까? 다를까? (본 글에서 일반 치수는 베이직 치수와 구분하기 위한 용어로 사용합니다.) 이 두 경우가 어떤 차이가 있는지 살펴보기 위해 먼저 데이텀 피쳐를 참조했을 때의 효과를 설명하고, 다음으로 베이직 치수를 정의했을 때의 효과를 설명한다. 마지막으로 동일한 치수를 베이직 치수로 정의했을 때와 일반치수로 정의했을 때 어떻게 달라지는지 설명한다.데이텀 피쳐를 참조했을 때 효과 : 공차영역 자유도 제한아래 그림에서 (가)와 (나)는 동일하게 윤곽공차 0.5를 정의하고 있다. 따라서 두 경우는 동일하게 너비가 0.5인 공차영역을 생성한다. (가)와 (나)의 차이.. 더보기
DRF가 같을 때와 다를 때 FCF의 세번째 칸부터는 참조하는 데이텀 피쳐를 표기한다. 데이텀 피쳐는 왼쪽에서 오른쪽으로 읽고, 데이텀 피쳐의 순서는 우선순위를 나타낸다. 첫번째 데이텀 피쳐가 1차 데이텀 피쳐이고, 두번째 데이텀 피쳐가 2차 데이텀 피쳐이고, 세번째 데이텀 피쳐가 3차 데이텀 피쳐이다.1차 데이텀 피쳐는 자신이 제한할 수 있는 모든 자유도를 제한한다.2차 데이텀 피쳐는 자신이 제한할 수 있는 자유도 중에서 1차 데이텀 피쳐에 의해 아직 제한되지 않은 모든 자유도를 제한한다.3차 데이텀 피쳐는 2차 데이텀 피쳐와 마찬가지로 자신이 제한할 수 있는 자유도 중에서 상위 데이텀 피쳐에 의해 제한되지 않는 모든 자유도를 제한한다. FCF에 참조된 데이텀 피쳐에 의해 DRF가 생성된다. DRF는 서로 수직한 세 개의 평면으.. 더보기
초급 #24 데이텀 피쳐 우선순위 영향 데이텀 피쳐를 참조하는 순서는 중요하다. 다음과 같은 파트가 있다.파트의 1차 데이텀은 동일하고 2차 데이텀과 3차 데이텀이 서로 뒤바뀌는 경우를 생각해보자. 데이텀 피쳐 C는 파트의 옆면이고, 데이텀 피쳐 B는 파트의 뒷면이다. 실제 서피스는 완벽하지 않게 제작될 것이다. 실제 제작된 파트를 위에서 바라보면 오른쪽 그림과 같을 때 홀 중심축의 자세가 어떻게 달라지는지 살펴보자. 첫번째 경우는 2차 데이텀 피쳐는 데이텀 피쳐 B를 참조하고 3차 데이텀 피쳐는 데이텀 피쳐 C를 참조하고 있다. 따라서 파트를 검사하려고 데이텀에 접촉할 때 데이텀 B와는 2점에서 접촉하고 데이텀 C와는 1점에서 접촉하도록 놓인다. 첫번째 경우는 2차 데이텀 피쳐는 데이텀 피쳐 C를 참조하고 3차 데이텀 피쳐는 데이텀 피쳐 .. 더보기
사이즈 피쳐의 RMB 경계, MMB 경계, LMB 경계 사이즈 피쳐를 데이텀 피쳐로 참조할 때 경계는 세 개 중 하나를 참조할 수 있다. RMB 경계, MMB 경계, LMB 경계이다. 사이즈 피쳐는 항상 세 종류의 경계가 있기 때문에 어떤 경계를 참조하고 있는지 명확하게 해야 한다. Rule #2에 의해 달리 명시된 것이 없으면, RMB 경계를 참조하게 된다.1차 데이텀 피쳐일 때1) RMB 경계 참조RMB 경계를 참조하면 데이텀 피쳐 시뮬레이터의 크기는 고정되지 않는다. 실제 피쳐의 사이즈에 따라 데이텀 피쳐 시뮬레이터의 크기가 달라진다.2) MMB 경계 참조MMB 경계를 참조하면 데이텀 피쳐 시뮬레이터의 크기는 피쳐의 재료가 최대가 되는 상태의 사이즈로 크기가 고정된다.3) LMB 경계 참조LMB 경계를 참조하면 데이텀 피쳐 시뮬레이터의 크기는 피쳐의 실.. 더보기
모든 피쳐에 있는 RMB 경계, 특별한 경우에만 있는 MMB 경계, LMB 경계 피쳐의 재료경계는 3종류의 RMB 경계, MMB 경계, LMB 경계로 나눌 수 있다.RMB 경계는 실제 서피스로 유도되는 경계이다. MMB 경계는 실체가 최대가 되는 경계이다. LMB 경계는 실체가 최소가 되는 경계이다. RMB 경계는 모든 피쳐에 있다.모든 피쳐는 서피스로 구성된다. 따라서 서피스 자체에 의해 유도되는 RMB 경계는 모든 피쳐에 있다. 데이텀 피쳐를 참조할 때 기본적으로 RMB 경계를 참조한다고 Rule #2에서 규정한다. 이는 앞선 글 Rule #2에서 설명했다. 데이텀 피쳐에서 데이텀을 유도할 때 TGC라는 개념을 사용한다. TGC는 데이텀 피쳐의 완벽한 상대형상으로 TGC로부터 데이텀을 도출해낸다. TGC는 실제 피쳐로부터 유도한다. 실제 피쳐로부터 유도된 TGC는 모두 RMB .. 더보기
최종적으로 DRF의 자유도가 무엇이 남는지가 중요하다. 데이텀 피쳐에 의해 데이텀을 생성할 수 있다. 데이텀의 종류에는 데이텀 점, 데이텀 선, 데이텀 면이 있다. 점, 선, 면은 기하학적 근본이 되는 요소이다. 각각의 데이텀은 가지고 있는 자유도가 다르고, 가지고 있는 자유도에 따라 제한되는 자유도가 달라진다. 먼저 데이텀 점을 살펴보자. 데이텀 점을 공간상에 놓으면 데이텀의 x좌표, y좌표, z좌표가 고정된다. 원점에 놓인 데이텀 점은 더이상 x축방향으로 이동할 수 없고, y축방향으로 이동할 수 없고, z축방향으로 이동할 수 없다. 다시 말해 데이텀 점의 병진자유도는 완전히 제한된다. 하지만 공간상에 놓여진 데이텀 점은 여전히 u방향, v방향, w방향으로 회전할 수 있다. 다시 말해 데이텀 점의 회전자유도는 제한되지 않는다.다시 말해 데이텀 점을 공간상에.. 더보기
DRF는 자유도가 포함된 좌표시스템 3차원 공간에서 입체도형은 6방향으로 움직일 수 있다. 3차원 공간을 설명하기에 앞서 2차원 평면에서의 움직임을 먼저 살펴보자.모든 평면도형은 평면상에서 3방향으로 자유롭게 움직일 수 있다.좌우로 움직일 수 있고, 앞뒤로 움직일 수 있다. 그리고 평면상에서 회전할 수 있다.이를 두고 병진자유도 2개와 회전자유도 1개가 있다라고 한다.GD&T에서 모든 파트는 3차원 형상인 입체도형이다.따라서 3차원 공간에서 입체도형의 자유도를 살펴볼 필요가 있다.3차원 공간은 서로 수직하는 평면 3개로 이루어진다. 2차원인 평면 3개로 이루어진다. 각 평면에서 병진이 2방향, 회전이 1방향으로 가능하다. 이를 단순히 더하면 병진은 6방향이 가능하지만, 중복되는 방향이 있기 때문에 이를 제외하면, 병진은 3방향이 가능하다... 더보기